Multilevel Algorithms

Sketch of the Templates

  1. Compute a static partial reordering

    \begin{displaymath}
% latex2html id marker 1048A \to P^\top AQ
=
\left(
\begi...
...\
\textcolor{green}{E}& \textcolor{red}{C}
\end{array}\right)
\end{displaymath}

     

  2. Factor $P^\top AQ$ and control % latex2html id marker 1056
$\Vert\textcolor{green}{L_k^{-1}}\Vert,\Vert\textcolor{blue}{U_k^{-1}}\Vert\leqslant\kappa$.
    \begin{displaymath}
% latex2html id marker 1049P^\top AQ \longrightarrow \hat ...
...eft(
\begin{array}{cc}
U_B & {U_F}\\
0& I
\end{array}\right)}
\end{displaymath}

     

  3. Apply strategy recursively to the approximate Schur complement (multilevel scheme)



Sketch of the Templates

west2021_org west2021_lev1start west2021_lev1end
west2021_lev2org west2021_lev2start west2021_lev2end


m.bollhoefer@tu-bs.de

Last modified: October 11, 2011