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Circuit and device simulation

Circuits
Modified nodal approach
transient analysis

Devices
harmonic balance
drift diffusion equations
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The Anderson model of localization
A Challenge for modern eigenvalue algorithms

Model describes electronic transport properties in disordered systems

Wave function probabilities

ω = 14.5 ω = 16.5 ω = 18.5
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The Anderson model of localization
A Challenge for modern eigenvalue algorithms

Uniform grid in a three–dimensional cube
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εijk xijk −

P
|p−i|=1,|q−j|=1,|r−j|=1 xpqr = λxijk

εijk ∈ [−ω/2, ω/2], ω radomly in [1, 30].

Eigenvalue problem Ax = λx in 3D

x quantum mechanic wave function

ω ≈ 16.5 critical range

ω � 16.5 → fluctuations, but bounded

ω � 16.5 → wave functions are localized
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Challenges

Physically sensible results require large scale simulation, n = m3(e.g.
m = 100, 200, . . . )

physically interesting: eigenvectors around λ = 0 at ωc = 16.5

→ requires eigenvalue solver which
compute some eigenvectors around λ = 0 at ωc
are fast (some hours up to a few days)
are memory efficient (required memory scales ∼ n)

Numerical Approach

Preconditioned Eigenvalue Solver
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What are Matchings

Example
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(Perfect) matching. (At most) one edge for each row/column

Associated permutation

Permuted matrix
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Minimum Weight Matchings

Matching → Permutation of the matrix to zero–free representation
[’MC21’, Duff’77]

Refined Objective: Strengthening diagonal dominance

Find matching such that
nY

i=1

|aπ(i),i | is maximized

dense case [Olschowka, Neumeier’96],

sparse case [’MC64’, Duff,Koster’99]
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Minimum Weight Matchings

reformulation: minimize
nX

i=1

|cπ(i),i |, where

cij =


maxj |aij | − log |aij | aij 6= 0

∞ otherwise

known linear–sum assignment problem

solution leads to two vectors (ui)i , (vj)j such that

ui + uj 6 cij and if (i, j) are part of the matching ui + uj = cij

diagonal scalings Dr = dgl (eui )i , Dc = dgl (evi / maxk |ajk |)j

yields permutation Π and diagonal scalings Dr and Dc .

A → Π>Dr ADc such that |aii | = 1, |aij | 6 1 for all i, j
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How matchings improve iterative solvers

Example

33 large sparse unstructured systems from chemical engineering

Simple dual threshold ILU with pivoting from SPARSKIT [Saad’94]

Restarted GMRES(30), check convergence after at most 500 steps
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How matchings improve iterative solvers

Minimum weight matchings significantly improve preconditioning
methods [Benzi,Haws,Tuma’00]

also applicable to factored sparse approximate inverses

High potential also as part direct solvers (PARDISO, SuperLU,. . . )

Matchings allow
Level 3 BLAS with static pivoting
use of symmetric reordering techniques

BUT

matching destroys symmetry structures

leads to unsymmetric scaling

in this way not directly applicable to symmetrically structured systems
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Basic Idea of Symmetric Matchings

Symmetric matchings [Duff,Gilbert’02], [Duff,Pralet’04]

Decompose permutation as product of cycles

each cycle is associated with a diagonal block, pivots stay there

Example

0BBBB@
∗ ∗ ∗

∗ ∗
∗ ∗ ∗

∗ ∗
∗

1CCCCA
original A

π = (5, 3, 4, 2, 1)
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Basic Idea of Symmetric Matchings

Symmetric matchings [Duff,Gilbert’02], [Duff,Pralet’04]

Decompose permutation as product of cycles

each cycle is associated with a diagonal block, pivots stay there

pivots stay inside if related SYMMETRIC permutation is applied

Example
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∗ ∗
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π = (5, 3, 4, 2, 1)

= (5, 1)(3, 4, 2)
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∗ ∗
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Basic Idea of Symmetric Matchings

break up cycles into pairs of 2–cycles and group them together
various strategies of breaking up the cycles
[Duff,Gilbert’02],[Duff,Pralet’04],[Schenk,Hagemann’04]
long cycles rarely show up in practice [Duff,Pralet’04]

Scaling replaced by symmetric scaling D = (DcDr )
1/2

ensures that entries are still at most 1 in modulus

Example
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Π>AΠ
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∗ ∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗
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rearranged Π>1 AΠ1
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∗ ∗ ∗
∗ ∗
∗ ∗
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final Π>2 AΠ2
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Symbolic reorderings techniques

multilevel nested dissection

→ MeTiS [Karypis,Kumar’95]

Approximate minimum degree [Amestoy,Davis,Duff,Gilbert,Larimore,Ng]

→ AMD, UMFPACK

further old–fashioned orderings (Reverse Cuthill–McKee, Minimum
Degree)

Different approach: diagonal dominance + sparsity [Saad’03]

alternative to matching + reordering
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Algebraic Multilevel Approach

Reordering (+ rescaling) the system →

F “fine grid points”
C “coarse grid points”

A → Π>AΠ =

„
AFF AFC
ACF ACC

«

Approximate block decomposition„
AFF AFC
ACF ACC

«
=

„
LFF 0
LCF I
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DFF 0
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«„
UFF UFC

0 I

«
+ E0@ @

@
@
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1A
| {z }

L

0@ @
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1A
| {z }

D
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| {z }

U

SCC coarse grid system, E error matrix

E represents the entries being discarded in L, U
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solution operator

Approximation BFF ≈ A−1
FF , e.g. via solving with LFFDFFUFF

BFC ≈ −A−1
FFAFC , e.g. via −L−1

FFLFC
BCF ≈ −ACFA−1

FF , e.g. via −UCFU−1
FF

„
AFF AFC
ACF ACC

«−1

≈
„

BFF 0
0 0

«
+

„
BFC

I

«
| {z }

P

S−1
CC
`

BCF I
´| {z }

R>

P “interpolation”

R> “restriction”

Multilevel approach: same approach recursively applied to SCC
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Solution Operator — Refinement

Supplement by smoothing steps G1, G2 (e.g. Jacobi, Gauss–Seidel)
Iterations matrix for the error e = x − x̃

e → (I −
„

BFF 0
0 0

«
+ PS−1

CCR>
ff

A)e

↓

e → (I −G2A)(I − PS−1
CCR>A)(I −G1A)e

V–cycle (µ = 1), W–cycle (µ = 2)

(I −G2A)(I − PS−1
CCR>A)µ(I −G1A)
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What means inverse–based decomposition

Prescribed uniform bound κ for the inverse transformations L−1, U−1

‖L−1‖ = ‖
„

L−1
FF 0

−LCFL−1
FF I

«
‖

∼ ‖
„
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FF 0

−BCF I
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6 κ
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U−1
FF −U−1

FFUFC
0 I

«
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∼ ‖

 
U−1
FF BFC
0 I

!
‖

P

6 κ
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Why inverse–based Decompositions

Generally speaking:

Norm of the inverse factors drive the approximation error

“Inverse error” F = L−1EU−1 is amplified

If the norms of inverse factors are even kept bounded:

Absolute error of the coarse grid system SCC can be predicted

Tight κ forces approximately sparse factors L−1, U−1
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Approximation Error
Why Inverse–Based Decompositions

Approximation A = LDU + E

For solving Ax = b we have to apply L−1, U−1
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Approximation Error
Why Inverse–Based Decompositions

Approximation L−1AU−1 = D + F

Can be used directly to construct an approximate inverse decomposition

“AINV” [Benzi, Tuma ’98]

compute approximate inverses W ≈ L−1, Z ≈ U−1 directly without L, U

A →

 
∗

!
+ F1 →

 
∗∗

!
+ F2 → · · · → WAZ =

 
@@

!
+ F

Numerical usually more expensive than ILU

Significantly more robust if small entries in W , Z are discarded.

ILUs as by-product from AINV inherit robustness [Benzi,Tuma’03]
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Approximation Error
Why Inverse–Based Decompositions

|wij |
|zkl |

ff
6 ε →


wij := 0
zkl := 0

Theorem [B.,Saad’02]

|lim| · ‖e>m W‖
|umj | · ‖Zem‖

)
6 ε →

(
lim := 0

umj := 0

⇒ e>i |I − LW |em 6 (m − i)ε, e>m |I − ZU|ej 6 (m − j)ε

Observation

Norm of the inverse factors drive the approximation error
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The Inverse Error
Why Inverse–Based Decompositions

„
LFF 0
LCF I

«−1

A
„

UFF UFC
0 I

«−1

=

„
DFF 0

0 SCC

«
+

 
∗ FFC

FCF ∗

!
| {z }

F

Lemma [B.,Saad’04]

Denote by EL,FF , EU,FF the entries being dropped from LFF , UFF .

coarse grid system S̃CC from ILU

⇒ FFC = −L−1
FF (EL,FFDFF + DFFEU,FF ) U−1

FFUFC

Coarse grid system S̃CC = R>AP (successively obtained via Galerkin)

⇒ FFC = − DFFEU,FF U−1
FFUFC
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Error Propagation
Why Inverse–Based Decompositoins

Suppose that the diagonal entries occuring during the decomposition
LFFDFFUFF = AFF + EFF are uniformly bounded.

Theorem [B.,Saad ’04]

Coarse grid system S̃CC from ILU

If lim, umj are dropped, whenever |lim|, |umj | 6 ε/κ2,

⇒ There exists a constant K such that |s̃ij − sij | 6 K (κε)2

Coarse grid system S̃CC = R>AP (successively from Galerkin)

If lim, umj are dropped, whenever |lim|, |umj | 6 ε,

⇒ There exists a constant K such that |s̃ij − sij | 6 K (κε)2
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Consequences for inverse–based multilevel methods

Estimate ‖L−1‖, ‖U−1‖ efficiently [Cline,Moler,Stewart,Wilkinson’77]

Construct a well–suited initial system by a priori permutation and scaling
(→ AFF )

Keep ‖L−1‖, ‖U−1‖ below κ by inverse-based pivoting

@
@@

@
@@

∗

↗

↘

@
@@

@
@@

∗

@
@@

@
@@

∗

factor

postpone

Tight κ desired, since ‖L−1‖∞ 6 κ ⇒
P

j<i |(L
−1)ij | 6 κ− 1
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Aggressive Dropping

Problem

for practical problems we do not precisely know the optimal ε

to be save we prefer a smaller tolerance

Consequences

as ε → 0, the fill–in significantly increases

as ε → 0, number of iteration steps decreases to a few number of steps

memory requirement dramatically increases

even for the iterative part, efficiency does not increase since the fill
increases
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Aggressive Dropping

Solution

We do not necessarily need a small number of iteration steps

instead: L−1AU−1 = D − F should lead to small ‖F‖ and small
perturbations in L−1, U−1 could be tolerated

Lemma

Denote by µk , νk the number of nonzeros in column k of L (resp. row k of U).
Let L̃, Ũ be constructed from L, U by dropping entries lik , ukj satisfying

‖L−1ei‖ · |lik | 6
τ

µk
, |ukj | · ‖e>j U−1‖ 6

τ

νk
,

then
D − F = (I + EL)(D̃ − F̃ )(I + EU)

where
‖EL‖1 6 τ, ‖EU‖∞ 6 τ.
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Aggressive Dropping

Example. BCSSTK25.

Compare time and memory WITHOUT and WITH aggressive dropping

drop tolerance ε is decreased

threshold τ for aggressive dropping is kept at 10−1

10−610−510−410−310−22

3

4

5

6

7

8

drop tolerance

time[sec]

10−610−510−410−310−23

4

5

6

7

8

9

10

drop tolerance

nnz(L)/nnz(A)
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Circuit Simulation (benchmark collection from Infineon)

compare regular and inverse–based ILU

Dependence of the decomposition on drop tolerance ε
(Convergence of GMRES(30) after at most 500 steps)

simple ILU inverse–based ILU
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Device Simulation

direct solver (PARDISO, [Schenk,Gärner’04] excellent, but causes a lot
of fill

inverse–based ILU (ILUPACK [B.,Saad’04]): fix drop tolerance at
ε = 10−3 and use κ = 10.

“regular” ILU fails until 1e − 7 for most problems

both use minimum weight matching and MeTiS.

direct solver inverse–based ILU
nnz(L+U)

nnz(A)
time[sec] nnz(L+U)

nnz(A)
time[sec]

barrier2-1 32.3 4.7e3 0.9 7.9e1
barrier2-2 32.3 4.6e3 0.9 6.1e1
barrier2-3 32.3 4.6e3 0.9 —
barrier2-4 32.3 4.6e3 0.9 1.1e2
barrier2-9 32.8 4.6e3 0.9 3.2e1
barrier2-10 32.8 4.6e3 0.9 7.5e1
barrier2-11 32.8 4.7e3 0.9 7.4e1
barrier2-12 32.8 4.7e3 0.9 6.5e1
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Challenges

Symmetry requires structure preserving solver

Block–oriented variant (1× 1, 2× 2), since highly indefinite

Matching–based preprocessing [Duff,Koster’98], [Gilbert,Duff’02],
[Duff,Pralet’04], [Schenk,Hagemann’04]

classical approach: Cullum–Willoughby algorithm [’85]

iterative methods ARPACK [Lehoucq,Sorensen,Yang’98],
Jacobi–Davidson [Sleijpen,Van der Vorst’96],[Geus’02]

direct solver PARDISO [Schenk,Gärtner],
preconditioner ILUPACK [B.,Saad’04],[B.,Schenk’05]



Challenging application problems Advances in Preconditioning Techniques Application Problems Conclusions

Numerical results [Schenk,B.,Römer’05]

n = m3, m = 100, 130, 160, 190. ω = ωc = 16.5.
(SGI Altix/BX2, Intel Itanium2, 1.6GHz)

Time

system size n = m3 106 2 · 106 4 · 106 7 · 106

Cullum–Willoughby 71 : 04 — — —

ARPACK + PARDISO 5 : 37 — — —

ARPACK + ILUPACK 0 : 45 5 : 46 13 : 58 —

Jacobi–Davidson + ILUPACK 0 : 18 1 : 01 5 : 03 9 : 06
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Numerical results [Schenk,B.,Römer,’05]

n = m3, m = 100, 130, 160, 190. ω = ωc = 16.5.

Memory [GB]

system size n = m3 106 2 · 106 4 · 106 7 · 106

ARPACK + PARDISO 14.3 — — —

ARPACK + ILUPACK 1.4 3.0 5.8 —

Jacobi–Davidson + ILUPACK 1.4 3.0 5.8 9.6
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Inverse–based decompositions: the key to success

clear: modern iterative eigenvalue solver (Jacobi-Davidson) essential

Matching quite helpful

key role: bound κ for ‖L−1‖

Numerical example m = 70, 100. Vary bound κ inside ILUPACK

κ(m = 70) κ(m = 100)

5 10 20 5 10 20

fill–in
nnz(L)

nnz(A)
11.7 18.6 31.7 11.6 18.6 —

Time [sec] 1.7e2 3.7e2 7.8e2 5.2e2 1.1e3 —
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ILUPACK V2.0

multilevel ILU preconditioning software package

inverse–based decompositions

single/double, real and complex arithmetic supported

classes of matrices that are supported
general
symmetric (Hermitian) positive definite

new in V2.0
real/complex symmetric, complex Hermitian indefinite
interfaces to incorporate matchings is provided (PARDISO, MC64)

http://www.math.tu-berlin.de/ilupack/

to be released soon . . .
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Conclusions

development in recent years has significantly changed preconditioning
methods as well as direct solvers

matchings dramatically stabilize preconditioning methods

symmetric matchings nowadays allow to efficiently treat symmetrically
structured indefinite systems

inverse–based decompositions are complementary approach

analysis partially gives an explanation for this effect
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