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Circuit and device simulation

@ Circuits

@ Modified nodal approach
o transient analysis

n2= 21298

e

¢ RIIET)

2 = 2039309

@ Devices

@ harmonic balance
o drift diffusion equations
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Outline

o Challenging application problems

@ Anderson Model — a case study
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The Anderson model of localization

A Challenge for modern eigenvalue algorithms

Model describes electronic transport properties in disordered systems

Wave function probabilities

w=145 w=16.5 w =185
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The Anderson model of localization

A Challenge for modern eigenvalue algorithms

Uniform grid in a three—dimensional cube

@ EijkXijk — Z\p—i|:1,\q—j\:l,|r—j|:1 Xpar = AXij
D@ < € [-w/2,w/2], w radomly in [1,30].
@ @ Eigenvalue problem Ax = Ax in 3D
@ @ X quantum mechanic wave function

@ w = 16.5 critical range
@ w < 16.5 — fluctuations, but bounded
@ w > 16.5 — wave functions are localized
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Challenges

@ Physically sensible results require large scale simulation, n = m3(e.g.
m = 100, 200, .. .)

@ physically interesting: eigenvectors around A = 0 at we = 16.5

@ — requires eigenvalue solver which
@ compute some eigenvectors around A\ = 0 at w¢
o are fast (some hours up to a few days)
e are memory efficient (required memory scales ~ n)



Challenging application problems
[e]ele] ]

Challenges

@ Physically sensible results require large scale simulation, n = m3(e.g.
m = 100, 200, .. .)

@ physically interesting: eigenvectors around A = 0 at we = 16.5

@ — requires eigenvalue solver which
@ compute some eigenvectors around A\ = 0 at w¢
o are fast (some hours up to a few days)
e are memory efficient (required memory scales ~ n)

Numerical Approach

Preconditioned Eigenvalue Solver
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e Advances in Preconditioning Techniques
@ Matchings
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What are Matchings

* * *
*x ok
* * *
* ok
%
original A




Advances in Preconditioning Techniques
O@0000

What are Matchings

Example
Rows Columns
* ok 2 2
* ok
4 4
%
5 5
original A

@ Associated graph



Advances in Preconditioning Techniques
O@0000

What are Matchings

Example
Rows Columns
* % 2 2
* ok
4 4
%
5 5
original A

@ Associated graph
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What are Matchings

Example
Rows Columns
1 1
* * *
k% 2 2
X ok * 3 3
* ok 4 4
%
5 5
original A
= (5,3,4,2,1)

@ Associated permutation
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What are Matchings

Example
Rows Columns
* * * 1 1 *
* % 2 2 * % *
* ok * 3 3 x ok
* * * *
5 5
original A permuted M"A
= (5,3,4,2,1)

@ Permuted matrix
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Minimum Weight Matchings

@ Matching — Permutation of the matrix to zero—free representation
[MC21’, Duff'77]

Refined Objective: Strengthening diagonal dominance

n
@ Find matching such that H |ax),i| is maximized
i=1
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Minimum Weight Matchings

@ Matching — Permutation of the matrix to zero—free representation
[MC21’, Duff'77]

Refined Objective: Strengthening diagonal dominance

n
@ Find matching such that H |ax),i| is maximized
i=1

@ dense case [Olschowka, Neumeier'96],
@ sparse case [MC64’, Duff,Koster'99]
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Minimum Weight Matchings

n
@ reformulation: minimize Z |Caiy,i], Where
i=1
e — J maxi[ay| —logla| & #0
U= 00 otherwise
@ known linear—sum assignment problem
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Minimum Weight Matchings

n
@ reformulation: minimize Z |Caiy,i], Where
i=1
e — J maxi[ay| —logla| & #0
J 00 otherwise
@ known linear—sum assignment problem

@ solution leads to two vectors (u;)i, (v;); such that
@ ui +u; <cjandif (i,]) are part of the matching u; + uj = ¢j
o diagonal scalings Dr = dgl (e");, Dc = dgl (e"i / maxy |aj|);
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Minimum Weight Matchings

n
@ reformulation: minimize Z |Caiy,i], Where
i=1
_ [ max;|aj| —logla;|  aj #0
Cj = .
oo otherwise
@ known linear—sum assignment problem

@ solution leads to two vectors (u;)i, (v;); such that
@ ui +u; <cjandif (i,]) are part of the matching u; + uj = ¢j
o diagonal scalings Dr = dgl (e");, Dc = dgl (e"i / maxy |aj|);

@ yields permutation I and diagonal scalings D, and Dc.

A — " D,AD. such that |aj| = 1, |aj| < 1 for all i,
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How matchings improve iterative solvers

@ 33 large sparse unstructured systems from chemical engineering
@ Simple dual threshold ILU with pivoting from SPARSKIT [Saad’'94]
@ Restarted GMRES(30), check convergence after at most 500 steps

ILUTP, percentage of problems solved
EE AVF ‘ ‘ ‘ ‘ ‘ ‘
01 B Mom without matching
80 Il ND 4

100

701

percentage

0.5 0.25 0.1 0.05 0.025 0.01 1e-3 1e—4 1e-5

drop tolerance -m
v
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How matchings improve iterative solvers

@ 33 large sparse unstructured systems from chemical engineering
@ Simple dual threshold ILU with pivoting from SPARSKIT [Saad’'94]
@ Restarted GMRES(30), check convergence after at most 500 steps

ILUTP, percentage of problems solved WITH MC6&4
E T T T T T T T

H MMD ; H
%N ] Hom with matching
80 HEE ND

100

percentage

0.5 0.25 0.1 0.05 0.025 0.01 1e-3 1e—4 1e-5

drop tolerance -ﬁ
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How matchings improve iterative solvers

@ Minimum weight matchings significantly improve preconditioning
methods [Benzi,Haws,Tuma’00]

also applicable to factored sparse approximate inverses

@ High potential also as part direct solvers (PARDISO, SuperLU,...)
@ Matchings allow

o Level 3 BLAS with static pivoting
e use of symmetric reordering techniques
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How matchings improve iterative solvers

@ Minimum weight matchings significantly improve preconditioning
methods [Benzi,Haws,Tuma’00]

also applicable to factored sparse approximate inverses

@ High potential also as part direct solvers (PARDISO, SuperLU,...)
@ Matchings allow

o Level 3 BLAS with static pivoting
e use of symmetric reordering techniques

@ matching destroys symmetry structures
@ leads to unsymmetric scaling

@ in this way not directly applicable to symmetrically structured systems
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e Advances in Preconditioning Techniques

@ Symmetric Matchings
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Basic Idea of Symmetric Matchings

Symmetric matchings [Duff,Gilbert'02], [Duff,Pralet’04]

* * *
* %k
o * r = (53,4,21)
*x ok
*

original A
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Basic Idea of Symmetric Matchings

Symmetric matchings [Duff,Gilbert'02], [Duff,Pralet’04]

@ Decompose permutation as product of cycles

*

* ! * - (5>3a4a27 1)
= (5,1)(3,4,2)

3
|

original A
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Basic Idea of Symmetric Matchings

Symmetric matchings [Duff,Gilbert'02], [Duff,Pralet'04]

@ Decompose permutation as product of cycles
@ each cycle is associated with a diagonal block, pivots stay there

* * *
* *
*E * m = (534,2,1) il
* * * |k
. (5,1)(3,4,2) T

original A permuted M A
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Basic Idea of Symmetric Matchings

Symmetric matchings [Duff,Gilbert'02], [Duff,Pralet'04]

@ Decompose permutation as product of cycles
@ each cycle is associated with a diagonal block, pivots stay there
@ pivots stay inside if related SYMMETRIC permutation is applied

* * | x| %
k x % © = (53,4,2,1) -
* % * | *
. (51342 \ 5% =]
original A permuted M AM
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Basic Idea of Symmetric Matchings

@ break up cycles into pairs of 2—cycles and group them together
@ various strategies of breaking up the cycles
[Duff,Gilbert'02],[Duff,Pralet'04],[Schenk,Hagemann’04]
@ long cycles rarely show up in practice [Duff,Pralet'04]
@ Scaling replaced by symmetric scaling D = (DD )*/?
ensures that entries are still at most 1 in modulus

- * * * *
* * * *
* | % *

MTAMN rearranged I, A, final I, Al
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@ Symbolic reorderings techniques
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Symbolic reorderings techniques

@ multilevel nested dissection
— MeTiS [Karypis,Kumar'95]

@ Approximate minimum degree [Amestoy,Davis,Duff,Gilbert,Larimore,Ng]
— AMD, UMFPACK

@ further old—fashioned orderings (Reverse Cuthill-McKee, Minimum
Degree)

@ Different approach: diagonal dominance + sparsity [Saad’03]
alternative to matching + reordering
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e Advances in Preconditioning Techniques

@ Inverse-based Techniques
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Algebraic Multilevel Approach

F  “fine grid points”
C “coarse grid points”

Arr Arc
A—TTAM=
- ( Acr Acc )

Reordering (+ rescaling) the system — {
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Algebraic Multilevel Approach

F  “fine grid points”
C “coarse grid points”

A— NTAM = < Arr Arc )

Reordering (+ rescaling) the system — {

Acr  Acc

Approximate block decomposition
Arr Arc _ L O Drr O Urr Uzxc LE
Acr Acc B Ler | 0 Scc 0 I

B JC S
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Algebraic Multilevel Approach

F  “fine grid points”
C “coarse grid points”

A— NTAM = < Arr Arc )

Reordering (+ rescaling) the system — {

Acr  Acc

(%) - (2 (% 2)(% %)
B JC S

@ Scc coarse grid system, E error matrix
@ E represents the entries being discarded in L, U
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solution operator

@ Approximation B-» ~ A;}, e.g. via solving with Lz =D~ U~
° Brc ~ —A7LArc, eg.via—-Lz5Lrc
(*] Ber =~ —AcfA;—:!_'F, e.g. via —UCLFU;;—
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solution operator

@ Approximation Br- ~ AL,

e.g. via solving with Lz =D~ U~
°

Brc ~ —AzLArc, eg.via—LzLLrc
(*] Ber =~ —AcfA;—:!_'F, e.g. via —UCLFU;;—

=i
Arr Arc _( B O Bre =il .
(AC}" Acc) N( 0 O>+( | )SCC(BCF |)

@ P “interpolation”
@ R “restriction”
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solution operator

@ Approximation Br- ~ AL,

e.g. via solving with Lz =D~ U~
°

Brc ~ —AzLArc, eg.via—LzLLrc
(*] Ber =~ —AcfA;—:!_'F, e.g. via —UCFU;}

1
Arr Arc - B O Brc -1
(AC}‘ Acc) N( 0 0>+( | )SCC(BCF |)

@ P “interpolation”
@ R “restriction”

Multilevel approach: same approach recursively applied to Scc
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Solution Operator — Refinement

@ Supplement by smoothing steps G1, G, (e.g. Jacobi, Gauss—Seidel)
Iterations matrix for the error e = x — X

e—(I— {( Bg" 8 ) + PSC‘ClRT}A)e
!
e — (I — GoA)(I — PSR TA)(I — GiA)e
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Solution Operator — Refinement

@ Supplement by smoothing steps G1, G, (e.g. Jacobi, Gauss—Seidel)
Iterations matrix for the error e = x — X

e—(I— {( Bg" 8 ) + PSC‘ClRT}A)e
!
e — (I — GoA)(I — PSR TA)(I — GiA)e

@ V-cycle (u = 1), W—cycle (u = 2)

(I — GA)(I — PSEARTA) (I — G;1A)
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What means inverse—based decomposition

Prescribed uniform bound « for the inverse transformations L=, U~

-1
= (S, %)) <n
—LerLzy
_ Uzt —uztu,
o= 1 (Y ) <n
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What means inverse—based decomposition

Prescribed uniform bound « for the inverse transformations L=, U~

=i -1
=S O~ (2 <k
L

RT
—1 1 _
HU71H — H U.7:Z7: —U]_-]_-U}‘C H ~ H U}—_];L— B}‘c H <K
0 I 0 I
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Why inverse—based Decompositions

Generally speaking:

@ Norm of the inverse factors drive the approximation error
@ “Inverse error” F = L=*EU ! is amplified

If the norms of inverse factors are even kept bounded:

@ Absolute error of the coarse grid system Scc can be predicted
@ Tight « forces approximately sparse factors L=, U~
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Approximation Error

Why Inverse—Based Decompositions

@ Approximation A =LDU +E
@ For solving Ax = b we have to apply L=, U~
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Approximation Error

Why Inverse—Based Decompositions

@ Approximation L"!AU"'= D +F
@ Can be used directly to construct an approximate inverse decomposition
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Approximation Error

Why Inverse—Based Decompositions

@ Approximation L"!AU"'= D +F
@ Can be used directly to construct an approximate inverse decomposition

“AINV” [Benzi, Tuma '98]

@ compute approximate inverses W ~ L=, Z ~ U~ directly without L, U

A— <*|:|>+F1H <**|:|>+F2H---HWAZ— (\D>+F

@ Numerical usually more expensive than ILU
@ Significantly more robust if small entries in W, Z are discarded.

@ ILUs as by-product from AINV inherit robustness [Benzi,Tuma’'03]
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Approximation Error

Why Inverse—Based Decompositions

Theorem [B.,Saad’02]

llim| - lem W ||
|Uri - [|Z&m||

—
N
™
!
—N
S p—
3 5
o O

=e' [l -LWlem < (m—i)e, en|l—ZUlej < (m—j)e
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Approximation Error

Why Inverse—Based Decompositions

Theorem [B.,Saad’02]
lm! - [l W | o =
<e—
U] - [1Zenm| U = O

=e' [l -LWlem < (m—i)e, en|l—ZUlej < (m—j)e

o

Observation
Norm of the inverse factors drive the approximation error

w
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The Inverse Error

Why Inverse—Based Decompositions

L O 71A Urr Uzxc 71: Drr O n * Fre
Ler | 0 | 0 Scc Fcr *
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The Inverse Error

Why Inverse—Based Decompositions

L O 71A Urr Uzxc 71: Drr O n * Fre
Ler | 0 | 0 Scc Fcr *

Lemma [B.,Saad'04]

Denote by E, ~~, Eu,»+ the entries being dropped from L7, Uz .

@ coarse grid system écc from ILU
= Frc = —Lz% (EL 77D + DrrEy r7) Uz3Uzrc

@ Coarse grid system Sce =RTAP (successively obtained via Galerkin)

= Frc= — DrrEu,rr UrzUrc
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Error Propagation

Why Inverse—-Based Decompositoins

Suppose that the diagonal entries occuring during the decomposition
LrsDrrUrr = Ar# + Ex» are uniformly bounded.
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Error Propagation

Why Inverse—-Based Decompositoins

Suppose that the diagonal entries occuring during the decomposition
LrsDrrUrr = Ar# + Ex» are uniformly bounded.

Theorem [B.,Saad '04]

@ Coarse grid system Sce from ILU

If lin, Um; are dropped, whenever [lim|, |umi| < &/,
= There exists a constant K such that |§; — s;j| < K (ke)?
@ Coarse grid system Sce =RTAP (successively from Galerkin)

If lim, umj are dropped, whenever |[lin|, |umj| < €,

= There exists a constant K such that |§; — sj| < K (ke)?
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Consequences for inverse—based multilevel methods

@ Estimate ||L7Y||, ||U~?| efficiently [Cline,Moler,Stewart,Wilkinson'77]

@ Construct a well-suited initial system by a priori permutation and scaling
(= Arr)

@ Keep |[L7Y, |[U~Y|| below « by inverse-based pivoting

factor

i

N

postpone

1\:_

*

@ Tight « desired, since [L™ o < ® =3 (L71)il <k —1
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e Advances in Preconditioning Techniques

@ Aggressive Dropping
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Aggressive Dropping

Problem
@ for practical problems we do not precisely know the optimal ¢
@ to be save we prefer a smaller tolerance

Consequences

@ as ¢ — 0, the fill-in significantly increases

as ¢ — 0, number of iteration steps decreases to a few number of steps

memory requirement dramatically increases

even for the iterative part, efficiency does not increase since the fill
increases
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Aggressive Dropping

Solution

@ We do not necessarily need a small number of iteration steps

@ instead: L~*AU~* = D — F should lead to small ||F || and small
perturbations in L=, U~ could be tolerated

Lemma

Denote by px, vk the number of nonzeros in column k of L (resp. row k of U).
Let L, U be constructed from L, U by dropping entries li, uy; satisfying
— T — T
IL"eill - ] < =, Juig] - lgT U™ < —,
ik Vk

then
D-—F=(+4+E)D-F)(I+Ey)

where

[ELlls <7, |Eulloo < 7.
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Aggressive Dropping

Example. BCSSTK25.

@ Compare time and memory WITHOUT and WITH aggressive dropping
@ drop tolerance ¢ is decreased

@ threshold 7 for aggressive dropping is kept at 10~*

10
S * time[sec] o NNz(L)/nnz(A) 1
+
6 ] 8r +
+ +
5-0- 7 +
+ +
6l
4 + +
* 50
B +
3 + + + e
+
2 _2 3 —4 -5 6 3
10 10 10 10 10 1072 107 107 10°° 10°¢
drop tolerance drop tolerance
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Aggressive Dropping

Example. BCSSTK25.

@ Compare time and memory WITHOUT and WITH aggressive dropping
@ drop tolerance ¢ is decreased

@ threshold 7 for aggressive dropping is kept at 10~*

10
A d time[sec] ] ol Nnz(L)/nnz(A) . +
6 ¥ -
+
q ¥ 7" +
+ ; +
° ? 6 :
+
4 (0] S+ 0 ©
g : o ©
3 o} o i a@ o)
+ 3l (e}
o 107 107 10° 10° 23 3 z s 6
10 10 10 10 10
drop tolerance drop tolerance
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@ Circuit and Device Simulation
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Circuit Simulation (benchmark collection from Infineon)

number of systems

@ compare regular and inverse—based ILU

@ Dependence of the decomposition on drop tolerance e
(Convergence of GMRES(30) after at most 500 steps)

simple ILU

0 05 0.25 0.1 0.05 0.0250.01 1e-3 1e-4

drop tolerance ¢

number of systems

0 0.5

inverse—based ILU

0.25 0.1 0.05 0.0250.01 1e-3 1e-4

drop tolerance e
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Device Simulation

@ direct solver (PARDISO, [Schenk,Gé&rner'04] excellent, but causes a lot
of fill

@ inverse—based ILU (ILUPACK [B.,Saad’04]): fix drop tolerance at
e =102 and use x = 10.

@ ‘“regular” ILU fails until 1e — 7 for most problems
@ both use minimum weight matching and MeTiS.

direct solver inverse—based ILU

. time[sec] . time[sec]

barrier2-1 32.3 4.7e3 0.9 7.9el
barrier2-2 32.3 4.6e3 0.9 6.1el
barrier2-3 32.3 4.6e3 0.9 —
barrier2-4 32.3 4.6e3 0.9 1.1e2
barrier2-9 32.8 4.6e3 0.9 3.2el
barrier2-10 32.8 4.6e3 0.9 7.5el
barrier2-11 32.8 4.7e3 0.9 7.4el
barrier2-12 32.8 4.7e3 0.9 6.5el
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e Application Problems

@ Anderson Model — a case study
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Challenges

@ Symmetry requires structure preserving solver
@ Block-oriented variant (1 x 1, 2 x 2), since highly indefinite

@ Matching—based preprocessing [Duff,Koster'98], [Gilbert,Duff'02],
[Duff,Pralet'04], [Schenk,Hagemann’04]

@ classical approach: Cullum—Willoughby algorithm ['85]

@ iterative methods ARPACK [Lehoucq,Sorensen,Yang'98],
Jacobi—Davidson [Sleijpen,Van der Vorst'96],[Geus’02]

@ direct solver PARDISO [Schenk,Gértner],
preconditioner ILUPACK [B.,Saad’04],[B.,Schenk’05]
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Numerical results [Schenk,B.,Romer’05]

n=m?, m = 100,130, 160, 190. w = we = 16.5.
(SGI Altix/BX2, Intel ltanium2, 1.6GHz)

Time
system size n = m® 106 2.10° 4.10° 7-10°

Cullum-Willoughby 71 :04 - — _
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Numerical results [Schenk,B.,Romer’05]

n=m?, m = 100,130, 160, 190. w = we = 16.5.
(SGI Altix/BX2, Intel ltanium2, 1.6GHz)

Time
system size n = m® 106 2.10° 4.10° 7-10°
Cullum-Willoughby 71 :04 - — _
ARPACK + PARDISO 5:37 — — —
ARPACK + ILUPACK 0:45 5:46 13:58 —

Jacobi-Davidson + ILUPACK  0:18 1:01 5:03 9:06
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Numerical results [Schenk,B.,Romer,

n=m?, m = 100,130, 160, 190. w = we = 16.5.

Memory [GB]
system size n = m® 106 2.10° 4-.10°% 7.-10°
ARPACK + PARDISO 14.3 — — =
ARPACK + ILUPACK 1.4 3.0 5.8 —
Jacobi—Davidson + ILUPACK 1.4 3.0 5.8 9.6
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Inverse—based decompositions: the key to success

@ clear: modern iterative eigenvalue solver (Jacobi-Davidson) essential
° Matching quite helpful

@ key role: bound « for ||L7%|

Numerical example m = 70, 100. Vary bound « inside ILUPACK

rk(m = 70) x(m = 100)
5 10 20 5 10 20
filin 002L) 407 186 317 116 186 —
nnz(A)
Time [sec] 1.7e2 3.7e2 7.8e2 5.2e2 1.1e3 —
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@ ILUPACK
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ILUPACK V2.0

@ multilevel ILU preconditioning software package
@ inverse—based decompositions
@ single/double, real and complex arithmetic supported

@ classes of matrices that are supported

o general
o symmetric (Hermitian) positive definite

@ new in V2.0

@ real/complex symmetric, complex Hermitian indefinite
@ interfaces to incorporate matchings is provided (PARDISO, MC64)

@ http://www.math.tu-berlin.de/ilupack/

to be released soon ...



Conclusions

Conclusions

@ development in recent years has significantly changed preconditioning
methods as well as direct solvers

@ matchings dramatically stabilize preconditioning methods

@ symmetric matchings nowadays allow to efficiently treat symmetrically
structured indefinite systems

@ inverse—based decompositions are complementary approach

@ analysis partially gives an explanation for this effect
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