Challenges for Matrix Preconditioning Methods

Matthias Bollhoefer¹

¹Dept. of Mathematics TU Berlin

Preconditioning 2005, Atlanta, May 19, 2005

supported by the DFG research center MATHEON in Berlin

Challenging	application	problems

Advances in Preconditioning Techniques

Application Problems

Conclusions

Outline

Challenging application problems

- Circuit and device simulation
- Anderson Model a case study

Advances in Preconditioning Techniques

- Matchings
- Symmetric Matchings
- Symbolic reorderings techniques
- Inverse-based Techniques
- Aggressive Dropping

3 Application Problems

- Circuit and Device Simulation
- Anderson Model a case study
- ILUPACK

Challenging	application p	problems
00000		

Advances in Preconditioning Techniques

Application Problems

Conclusions

Outline

Challenging application problems Circuit and device simulation

- Anderson Model a case study

Advances in Preconditioning Techniques

- Matchings
- Symmetric Matchings
- Symbolic reorderings techniques
- Inverse-based Techniques
- Aggressive Dropping
- 3 Application Problems
 - Circuit and Device Simulation
 - Anderson Model a case study
 - ILUPACK

Advances in Preconditioning Techniques

Application Problems

Conclusions

Circuit and device simulation

Circuits

- Modified nodal approach
- transient analysis

- Devices
 - harmonic balance
 - drift diffusion equations

Challenging	application	problems
000000		

Outline

Challenging application problems

- Circuit and device simulation
- Anderson Model a case study

2 Advances in Preconditioning Techniques

- Matchings
- Symmetric Matchings
- Symbolic reorderings techniques
- Inverse-based Techniques
- Aggressive Dropping
- 3 Application Problems
 - Circuit and Device Simulation
 - Anderson Model a case study
 - ILUPACK

Advances in Preconditioning Techniques

Application Problems

Conclusions

The Anderson model of localization A Challenge for modern eigenvalue algorithms

Model describes electronic transport properties in disordered systems

Wave function probabilities

 $\omega = 14.5$ $\omega = 16.5$ $\omega = 18.5$

Advances in Preconditioning Techniques

Application Problems

Conclusions

The Anderson model of localization A Challenge for modern eigenvalue algorithms

- $\omega \approx$ 16.5 critical range
- $\omega \ll$ 16.5 \rightarrow fluctuations, but bounded
- $\omega \gg$ 16.5 \rightarrow wave functions are localized

(日)

Challenges

- Physically sensible results require large scale simulation, n = m³(e.g. m = 100, 200, ...)
- physically interesting: eigenvectors around $\lambda = 0$ at $\omega_c = 16.5$
- $\bullet \ \rightarrow$ requires eigenvalue solver which
 - compute some eigenvectors around λ = 0 at ω_c
 - are fast (some hours up to a few days)
 - are memory efficient (required memory scales ~ n)

Challenges

- Physically sensible results require large scale simulation, n = m³(e.g. m = 100, 200, ...)
- physically interesting: eigenvectors around $\lambda = 0$ at $\omega_c = 16.5$
- $\bullet \ \rightarrow$ requires eigenvalue solver which
 - compute some eigenvectors around λ = 0 at ω_c
 - are fast (some hours up to a few days)
 - are memory efficient (required memory scales ~ n)

Numerical Approach

Preconditioned Eigenvalue Solver


```
Challenging application problems
```

Outline

- Circuit and device simulation
- Anderson Model a case study

Advances in Preconditioning Techniques Matchings

- Symmetric Matchings
- Symbolic reorderings techniques
- Inverse-based Techniques
- Aggressive Dropping
- - Circuit and Device Simulation
 - Anderson Model a case study
 - ILUPACK

Advances in Preconditioning Techniques

Application Problems

Conclusions

What are Matchings

Example

Advances in Preconditioning Techniques

Application Problems

Conclusions

What are Matchings

Associated graph

Advances in Preconditioning Techniques

Application Problems

・ロト ・ 同ト ・ ヨト ・ ヨト

э

Conclusions

What are Matchings

- Associated graph
- (Perfect) matching. (At most) one edge for each row/column

Advances in Preconditioning Techniques

Application Problems

Conclusions

What are Matchings

• (Perfect) matching. (At most) one edge for each row/column

Advances in Preconditioning Techniques

Application Problems

Conclusions

What are Matchings

Associated permutation

Advances in Preconditioning Techniques

Application Problems

What are Matchings

Permuted matrix

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Minimum Weight Matchings

• Matching \rightarrow Permutation of the matrix to zero–free representation ['MC21', Duff'77]

Refined Objective: Strengthening diagonal dominance

• Find matching such that
$$\prod_{i=1}^n |a_{\pi(i),i}|$$
 is maximized

Minimum Weight Matchings

• Matching \rightarrow Permutation of the matrix to zero–free representation ['MC21', Duff'77]

Refined Objective: Strengthening diagonal dominance

• Find matching such that
$$\prod_{i=1}^{n} |a_{\pi(i),i}|$$
 is maximized

- dense case [Olschowka, Neumeier'96],
- sparse case ['MC64', Duff,Koster'99]

Advances in Preconditioning Techniques

Application Problems

Conclusions

Minimum Weight Matchings

• reformulation: minimize
$$\sum_{i=1}^{n} |c_{\pi(i),i}|$$
, where
 $c_{ij} = \begin{cases} \max_{j} |a_{ij}| - \log |a_{ij}| & a_{ij} \neq 0 \\ \infty & \text{otherwise} \end{cases}$

known linear-sum assignment problem

Advances in Preconditioning Techniques

Application Problems

Conclusions

Minimum Weight Matchings

• reformulation: minimize
$$\sum_{i=1}^{n} |c_{\pi(i),i}|$$
, where
 $c_{ij} = \begin{cases} \max_{j} |a_{ij}| - \log |a_{ij}| & a_{ij} \neq 0 \\ \infty & \text{otherwise} \end{cases}$

known linear-sum assignment problem

- solution leads to two vectors $(u_i)_i$, $(v_j)_j$ such that
 - $u_i + u_j \leq c_{ij}$ and if (i, j) are part of the matching $u_i + u_j = c_{ij}$
 - diagonal scalings $D_r = dgl (e^{u_i})_i$, $D_c = dgl (e^{v_i} / \max_k |a_{jk}|)_j$

Advances in Preconditioning Techniques

Application Problems

(日)

Conclusions

Minimum Weight Matchings

• reformulation: minimize
$$\sum_{i=1}^{n} |c_{\pi(i),i}|$$
, where
 $c_{ij} = \begin{cases} \max_{j} |a_{ij}| - \log |a_{ij}| & a_{ij} \neq 0 \\ \infty & \text{otherwise} \end{cases}$

known linear–sum assignment problem

- solution leads to two vectors $(u_i)_i$, $(v_j)_j$ such that
 - $u_i + u_j \leq c_{ij}$ and if (i, j) are part of the matching $u_i + u_j = c_{ij}$
 - diagonal scalings D_r = dgl (e^{u_i})_i, D_c = dgl (e^{v_i} / max_k |a_{jk}|)_j
- yields permutation Π and diagonal scalings D_r and D_c .

 $A \rightarrow \Pi^{\top} D_r A D_c$ such that $|a_{ii}| = 1, |a_{ij}| \leq 1$ for all i, j

How matchings improve iterative solvers

Example

- 33 large sparse unstructured systems from chemical engineering
- Simple dual threshold ILU with pivoting from SPARSKIT [Saad'94]
- Restarted GMRES(30), check convergence after at most 500 steps

How matchings improve iterative solvers

Example

- 33 large sparse unstructured systems from chemical engineering
- Simple dual threshold ILU with pivoting from SPARSKIT [Saad'94]
- Restarted GMRES(30), check convergence after at most 500 steps

How matchings improve iterative solvers

 Minimum weight matchings significantly improve preconditioning methods [Benzi,Haws,Tuma'00]

also applicable to factored sparse approximate inverses

- High potential also as part direct solvers (PARDISO, SuperLU,...)
- Matchings allow
 - Level 3 BLAS with static pivoting
 - use of symmetric reordering techniques

How matchings improve iterative solvers

 Minimum weight matchings significantly improve preconditioning methods [Benzi,Haws,Tuma'00]

also applicable to factored sparse approximate inverses

- High potential also as part direct solvers (PARDISO, SuperLU,...)
- Matchings allow
 - Level 3 BLAS with static pivoting
 - use of symmetric reordering techniques

BUT

- matching destroys symmetry structures
- leads to unsymmetric scaling
- in this way not directly applicable to symmetrically structured systems

Outline

Challenging application problems

- Circuit and device simulation
- Anderson Model a case study

2 Advances in Preconditioning Techniques

Matchings

Symmetric Matchings

- Symbolic reorderings techniques
- Inverse-based Techniques
- Aggressive Dropping
- 3 Application Problems
 - Circuit and Device Simulation
 - Anderson Model a case study
 - ILUPACK

Advances in Preconditioning Techniques

Application Problems

Conclusions

Basic Idea of Symmetric Matchings

Symmetric matchings [Duff,Gilbert'02], [Duff,Pralet'04]

Advances in Preconditioning Techniques

Application Problems

Conclusions

Basic Idea of Symmetric Matchings

Symmetric matchings [Duff,Gilbert'02], [Duff,Pralet'04]

Decompose permutation as product of cycles

Advances in Preconditioning Techniques

Application Problems

Conclusions

Basic Idea of Symmetric Matchings

Symmetric matchings [Duff,Gilbert'02], [Duff,Pralet'04]

- Decompose permutation as product of cycles
- each cycle is associated with a diagonal block, pivots stay there

Advances in Preconditioning Techniques

Application Problems

Conclusions

Basic Idea of Symmetric Matchings

Symmetric matchings [Duff,Gilbert'02], [Duff,Pralet'04]

- Decompose permutation as product of cycles
- each cycle is associated with a diagonal block, pivots stay there
- pivots stay inside if related SYMMETRIC permutation is applied

Advances in Preconditioning Techniques

Application Problems

Conclusions

Basic Idea of Symmetric Matchings

- break up cycles into pairs of 2-cycles and group them together
 - various strategies of breaking up the cycles [Duff,Gilbert'02],[Duff,Pralet'04],[Schenk,Hagemann'04]
 - long cycles rarely show up in practice [Duff, Pralet'04]
- Scaling replaced by symmetric scaling $D = (D_c D_r)^{1/2}$ ensures that entries are still at most 1 in modulus

Example

Outline

- Challenging application problems
 - Circuit and device simulation
 - Anderson Model a case study

2 Advances in Preconditioning Techniques

- Matchings
- Symmetric Matchings

• Symbolic reorderings techniques

- Inverse-based Techniques
- Aggressive Dropping
- 3 Application Problems
 - Circuit and Device Simulation
 - Anderson Model a case study
 - ILUPACK

Symbolic reorderings techniques

- multilevel nested dissection
 - → MeTiS [Karypis,Kumar'95]
- Approximate minimum degree [Amestoy,Davis,Duff,Gilbert,Larimore,Ng]
 → AMD, UMFPACK
- further old–fashioned orderings (Reverse Cuthill–McKee, Minimum Degree)
- Different approach: diagonal dominance + sparsity [Saad'03] alternative to matching + reordering

Advances in Preconditioning Techniques

Application Problems

Conclusions

Outline

Challenging application problems

- Circuit and device simulation
- Anderson Model a case study

2 Advances in Preconditioning Techniques

- Matchings
- Symmetric Matchings
- Symbolic reorderings techniques
- Inverse-based Techniques
- Aggressive Dropping
- 3 Application Problems
 - Circuit and Device Simulation
 - Anderson Model a case study
 - ILUPACK

Advances in Preconditioning Techniques

Conclusions

Algebraic Multilevel Approach

Reordering (+ rescaling) the system $\rightarrow \begin{cases} \mathcal{F} & \text{"fine grid points"} \\ \mathcal{C} & \text{"coarse grid points"} \end{cases}$

$$A \to \Pi^{\top} A \Pi = \begin{pmatrix} A_{\mathcal{F}\mathcal{F}} & A_{\mathcal{F}\mathcal{C}} \\ A_{\mathcal{C}\mathcal{F}} & A_{\mathcal{C}\mathcal{C}} \end{pmatrix}$$

Advances in Preconditioning Techniques

Application Problems

Conclusions

Algebraic Multilevel Approach

Reordering (+ rescaling) the system $\rightarrow \begin{cases} \mathcal{F} & \text{"fine grid points"} \\ \mathcal{C} & \text{"coarse grid points"} \end{cases}$ $A \rightarrow \Pi^{\top} A \Pi = \begin{pmatrix} A_{\mathcal{F}\mathcal{F}} & A_{\mathcal{F}\mathcal{C}} \\ A_{\mathcal{C}\mathcal{F}} & A_{\mathcal{C}\mathcal{C}} \end{pmatrix}$

Approximate block decomposition

$$\begin{pmatrix} A_{\mathcal{F}\mathcal{F}} & A_{\mathcal{F}\mathcal{C}} \\ A_{\mathcal{C}\mathcal{F}} & A_{\mathcal{C}\mathcal{C}} \end{pmatrix} = \begin{pmatrix} L_{\mathcal{F}\mathcal{F}} & 0 \\ L_{\mathcal{C}\mathcal{F}} & I \end{pmatrix} \begin{pmatrix} D_{\mathcal{F}\mathcal{F}} & 0 \\ 0 & S_{\mathcal{C}\mathcal{C}} \end{pmatrix} \begin{pmatrix} U_{\mathcal{F}\mathcal{F}} & U_{\mathcal{F}\mathcal{C}} \\ 0 & I \end{pmatrix} + E$$
$$\underbrace{\left(\bigsqcup_{L} \right)}_{L} \underbrace{\left(\bigsqcup_{L} \right)}_{D} \underbrace{\left(\bigsqcup_{L} \right)}_{D} \underbrace{\left(\bigsqcup_{L} \right)}_{U} \underbrace{\left(\bigsqcup_{L} \bigcup, U} \underbrace{\left(\bigsqcup_{L} \right)}_{U} \underbrace{\left(\bigsqcup_{L} \bigcup, U} \underbrace{\left(\bigsqcup_{L} \bigcup, U} \underbrace{\left(\bigsqcup_{L} \bigcup, U} \underbrace{\left(\bigsqcup_{L} \bigcup, U} \underbrace{\left(\bigsqcup, U} \underbrace{\left$$

Advances in Preconditioning Techniques

Application Problems

・<回><回><回><回><回><回><回><<回><
 ・<回><
 ・<回>
 ・<回>
 ・<回>
 ・<
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Conclusions

Algebraic Multilevel Approach

Reordering (+ rescaling) the system $\rightarrow \begin{cases} \mathcal{F} & \text{"fine grid points"} \\ \mathcal{C} & \text{"coarse grid points"} \end{cases}$ $A \rightarrow \Pi^{\top} A \Pi = \begin{pmatrix} A_{\mathcal{F}\mathcal{F}} & A_{\mathcal{F}\mathcal{C}} \\ A_{\mathcal{C}\mathcal{F}} & A_{\mathcal{C}\mathcal{C}} \end{pmatrix}$

Approximate block decomposition

$$\begin{pmatrix} A_{\mathcal{F}\mathcal{F}} & A_{\mathcal{F}\mathcal{C}} \\ A_{\mathcal{C}\mathcal{F}} & A_{\mathcal{C}\mathcal{C}} \end{pmatrix} = \begin{pmatrix} L_{\mathcal{F}\mathcal{F}} & 0 \\ L_{\mathcal{C}\mathcal{F}} & I \end{pmatrix} \begin{pmatrix} D_{\mathcal{F}\mathcal{F}} & 0 \\ 0 & S_{\mathcal{C}\mathcal{C}} \end{pmatrix} \begin{pmatrix} U_{\mathcal{F}\mathcal{F}} & U_{\mathcal{F}\mathcal{C}} \\ 0 & I \end{pmatrix} + E$$

$$\underbrace{\left(\bigsqcup_{L} \right)}_{L} \underbrace{\left(\bigsqcup_{L} \right)}_{D} \underbrace{\left(\bigsqcup_{L} \right)}_{D} \underbrace{\left(\bigsqcup_{L} \right)}_{U} \underbrace{\left(\bigsqcup_{L} \bigcup_{L} \underbrace{\left(\bigsqcup_{L} \right)}_{U} \underbrace{\left(\bigsqcup_{L} \right)}_{U} \underbrace{\left(\bigsqcup_{L} \bigcup\right)}_{U} \underbrace{\left(\bigsqcup_{L} \bigsqcup\right)}_{U} \underbrace{\left(\bigsqcup_{L} \bigsqcup\right)}_{U}$$

- S_{CC} coarse grid system, E error matrix
- E represents the entries being discarded in L, U

Challenging	application	problems

Application Problems

solution operator

- Approximation $B_{\mathcal{FF}} \approx A_{\mathcal{FF}}^{-1}$,
- $B_{\mathcal{FC}} \approx -A_{\mathcal{FF}}^{-1}A_{\mathcal{FC}}$, e.g. via $-L_{\mathcal{FF}}^{-1}L_{\mathcal{FC}}$
- $B_{\mathcal{CF}} \approx -A_{\mathcal{CF}}A_{\mathcal{FF}}^{-1}$, e.g. via $-U_{\mathcal{CF}}U_{\mathcal{FF}}^{-1}$
- e.g. via solving with $L_{\mathcal{FF}}D_{\mathcal{FF}}U_{\mathcal{FF}}$ e.g. via $-L_{\mathcal{FF}}^{-1}L_{\mathcal{FC}}$ e.g. via $-U_{\mathcal{CF}}U_{\mathcal{TT}}^{-1}$

Challenging	application	problems

Application Problems

solution operator

- Approximation $B_{\mathcal{FF}} \approx A_{\mathcal{FF}}^{-1}$,
- e.g. via solving with $L_{\mathcal{FF}}D_{\mathcal{FF}}U_{\mathcal{FF}}$
- $B_{\mathcal{FC}} \approx -A_{\mathcal{FF}}^{-1}A_{\mathcal{FC}}$, e.g. via $-L_{\mathcal{FF}}^{-1}L_{\mathcal{FC}}$
- $B_{C\mathcal{F}} \approx -A_{C\mathcal{F}}A_{\mathcal{F}\mathcal{F}}^{-1}$, e.g. via $-U_{C\mathcal{F}}U_{\mathcal{F}\mathcal{F}}^{-1}$

$$\begin{pmatrix} A_{\mathcal{F}\mathcal{F}} & A_{\mathcal{F}\mathcal{C}} \\ A_{\mathcal{C}\mathcal{F}} & A_{\mathcal{C}\mathcal{C}} \end{pmatrix}^{-1} \approx \begin{pmatrix} B_{\mathcal{F}\mathcal{F}} & 0 \\ 0 & 0 \end{pmatrix} + \underbrace{\begin{pmatrix} B_{\mathcal{F}\mathcal{C}} \\ I \end{pmatrix}}_{P} S_{\mathcal{C}\mathcal{C}}^{-1} \underbrace{\begin{pmatrix} B_{\mathcal{C}\mathcal{F}} & I \end{pmatrix}}_{R^{\top}}$$

- P "interpolation"
- *R*[⊤] "restriction"

Challenging	application	problems

Application Problems

solution operator

• Approximation $B_{\mathcal{FF}} \approx A_{\mathcal{FF}}^{-1}$,

e.g. via solving with $L_{\mathcal{FF}}D_{\mathcal{FF}}U_{\mathcal{FF}}$

• $B_{\mathcal{F}\mathcal{C}} \approx -A_{\mathcal{F}\mathcal{F}}^{-1}A_{\mathcal{F}\mathcal{C}}$, e.g. via $-L_{\mathcal{F}\mathcal{F}}^{-1}L_{\mathcal{F}\mathcal{C}}$ • $B_{\mathcal{C}\mathcal{F}} \approx -A_{\mathcal{C}\mathcal{F}}A_{\mathcal{T}\mathcal{T}}^{-1}$, e.g. via $-U_{\mathcal{C}\mathcal{F}}U_{\mathcal{T}\mathcal{T}}^{-1}$

$$\begin{pmatrix} A_{\mathcal{FF}} & A_{\mathcal{FC}} \\ A_{\mathcal{CF}} & A_{\mathcal{CC}} \end{pmatrix}^{-1} \approx \begin{pmatrix} B_{\mathcal{FF}} & 0 \\ 0 & 0 \end{pmatrix} + \underbrace{\begin{pmatrix} B_{\mathcal{FC}} \\ I \end{pmatrix}}_{P} S_{\mathcal{CC}}^{-1} \underbrace{\begin{pmatrix} B_{\mathcal{CF}} & I \end{pmatrix}}_{R^{\top}}$$

- P "interpolation"
- *R*[⊤] "restriction"

Multilevel approach: same approach recursively applied to Scc

Advances in Preconditioning Techniques

Application Problems

Conclusions

Solution Operator — Refinement

• Supplement by smoothing steps G_1, G_2 (e.g. Jacobi, Gauss–Seidel) Iterations matrix for the error $e = x - \tilde{x}$

$$e \rightarrow (I - \left\{ \begin{pmatrix} B_{\mathcal{FF}} & 0\\ 0 & 0 \end{pmatrix} + PS_{\mathcal{CC}}^{-1}R^{\top} \right\} A)e$$

$$\downarrow$$

$$e \rightarrow (I - G_{2}A)(I - PS_{\mathcal{CC}}^{-1}R^{\top}A)(I - G_{1}A)e$$

Advances in Preconditioning Techniques

Application Problems

Conclusions

Solution Operator — Refinement

• Supplement by smoothing steps G_1, G_2 (e.g. Jacobi, Gauss–Seidel) Iterations matrix for the error $e = x - \tilde{x}$

$$e \rightarrow (I - \left\{ \begin{pmatrix} B_{\mathcal{FF}} & 0\\ 0 & 0 \end{pmatrix} + PS_{\mathcal{CC}}^{-1}R^{\top} \right\} A)e$$

$$\downarrow$$

$$e \rightarrow (I - G_{2}A)(I - PS_{\mathcal{CC}}^{-1}R^{\top}A)(I - G_{1}A)e$$

• V-cycle (μ = 1), W-cycle (μ = 2) ($I - G_2 A$)($I - PS_{CC}^{-1} R^T A$) $^{\mu} (I - G_1 A)$

Advances in Preconditioning Techniques

Application Problems

Conclusions

What means inverse-based decomposition

Prescribed uniform bound κ for the inverse transformations L^{-1} , U^{-1}

$$\|L^{-1}\| = \|\begin{pmatrix} L_{\mathcal{FF}}^{-1} & 0\\ -L_{\mathcal{CF}}L_{\mathcal{FF}}^{-1} & I \end{pmatrix}\| \leqslant \kappa$$

$$\|U^{-1}\| = \|\begin{pmatrix} U_{\mathcal{F}\mathcal{F}}^{-1} & -U_{\mathcal{F}\mathcal{F}}^{-1}U_{\mathcal{F}\mathcal{C}}\\ 0 & I \end{pmatrix}\| \leqslant \kappa$$

Advances in Preconditioning Techniques

Application Problems

Conclusions

What means inverse-based decomposition

Prescribed uniform bound κ for the inverse transformations L^{-1} , U^{-1}

$$\|L^{-1}\| = \|\begin{pmatrix} L_{\mathcal{FF}}^{-1} & 0\\ -L_{\mathcal{CF}}^{-1}L_{\mathcal{FF}}^{-1} & I \end{pmatrix}\| \sim \|\begin{pmatrix} L_{\mathcal{FF}}^{-1} & 0\\ -B_{\mathcal{CF}}^{-1} & I \end{pmatrix}\| \leqslant \kappa$$
$$R^{\top}$$

$$\|U^{-1}\| = \|\begin{pmatrix} U_{\mathcal{FF}}^{-1} & -U_{\mathcal{FF}}^{-1}U_{\mathcal{FC}}\\ 0 & I \end{pmatrix}\| \sim \|\begin{pmatrix} U_{\mathcal{FF}}^{-1} & \overline{B_{\mathcal{FC}}}\\ 0 & I \end{pmatrix}\| \leqslant \kappa$$

$$P$$

Why inverse-based Decompositions

Generally speaking:

- Norm of the inverse factors drive the approximation error
- "Inverse error" $F = L^{-1}EU^{-1}$ is amplified

If the norms of inverse factors are even kept bounded:

- Absolute error of the coarse grid system S_{CC} can be predicted
- Tight κ forces approximately sparse factors L^{-1}, U^{-1}

Advances in Preconditioning Techniques

Application Problems

Conclusions

Approximation Error Why Inverse–Based Decompositions

- Approximation A = LDU + E
- For solving Ax = b we have to apply L^{-1} , U^{-1}

Advances in Preconditioning Techniques

Application Problems

Conclusions

Approximation Error Why Inverse–Based Decompositions

- Approximation $L^{-1}AU^{-1} = D + F$
- Can be used directly to construct an approximate inverse decomposition

Approximation Error Why Inverse–Based Decompositions

- Approximation $L^{-1}AU^{-1} = D + F$
- Can be used directly to construct an approximate inverse decomposition

"AINV" [Benzi, Tuma '98]

• compute approximate inverses $W \approx L^{-1}$, $Z \approx U^{-1}$ directly without L, U

$$\mathsf{A} \to \begin{pmatrix} * \\ & \\ \end{pmatrix} + \mathsf{F}_1 \to \begin{pmatrix} * \\ & \\ \end{pmatrix} + \mathsf{F}_2 \to \cdots \to \mathsf{WAZ} = \begin{pmatrix} & \\ & \\ \end{pmatrix} + \mathsf{F}$$

- Numerical usually more expensive than ILU
- Significantly more robust if small entries in *W*, *Z* are discarded.
- ILUs as by-product from AINV inherit robustness [Benzi,Tuma'03]

Advances in Preconditioning Techniques

Application Problems

Conclusions

Approximation Error Why Inverse–Based Decompositions

$$\begin{vmatrix} \mathbf{w}_{ij} \\ |\mathbf{z}_{kl} \end{vmatrix} \ \Big\} \leqslant \varepsilon \rightarrow \left\{ \begin{array}{cc} \mathbf{w}_{ij} & := & \mathbf{0} \\ \mathbf{z}_{kl} & := & \mathbf{0} \end{array} \right.$$

Theorem [B.,Saad'02]

$$\begin{array}{c} |I_{im}| \cdot \|\boldsymbol{e}_{m}^{\top} \boldsymbol{W}\| \\ |\boldsymbol{u}_{mj}| \cdot \|\boldsymbol{Z} \boldsymbol{e}_{m}\| \end{array} \right\} \leqslant \varepsilon \to \left\{ \begin{array}{c} I_{im} & := & 0 \\ \boldsymbol{u}_{mj} & := & 0 \end{array} \right.$$

$$\Rightarrow \mathbf{e}_i^\top | I - LW | \mathbf{e}_m \leqslant (m-i)\varepsilon, \quad \mathbf{e}_m^\top | I - ZU | \mathbf{e}_j \leqslant (m-j)\varepsilon$$

Advances in Preconditioning Techniques

Application Problems

Conclusions

Approximation Error Why Inverse-Based Decompositions

$$\begin{array}{c} | \mathbf{w}_{ij} | \\ | \mathbf{z}_{kl} | \end{array} \right\} \leqslant \varepsilon \rightarrow \left\{ \begin{array}{c} \mathbf{w}_{ij} & := & \mathbf{0} \\ \mathbf{z}_{kl} & := & \mathbf{0} \end{array} \right.$$

Theorem [B.,Saad'02]

$$r \Rightarrow \mathbf{e}_i^\top | I - LW | \mathbf{e}_m \leqslant (m-i)\varepsilon, \quad \mathbf{e}_m^\top | I - ZU | \mathbf{e}_j \leqslant (m-j)\varepsilon$$

Observation

Norm of the inverse factors drive the approximation error

Advances in Preconditioning Techniques

Application Problems

Conclusions

The Inverse Error Why Inverse–Based Decompositions

$$\begin{pmatrix} L_{\mathcal{F}\mathcal{F}} & 0\\ L_{\mathcal{C}\mathcal{F}} & I \end{pmatrix}^{-1} A \begin{pmatrix} U_{\mathcal{F}\mathcal{F}} & U_{\mathcal{F}\mathcal{C}}\\ 0 & I \end{pmatrix}^{-1} = \begin{pmatrix} D_{\mathcal{F}\mathcal{F}} & 0\\ 0 & S_{\mathcal{C}\mathcal{C}} \end{pmatrix} + \underbrace{\begin{pmatrix} * & F_{\mathcal{F}\mathcal{C}}\\ F_{\mathcal{C}\mathcal{F}} & * \end{pmatrix}}_{F}$$

Advances in Preconditioning Techniques

Application Problems

Conclusions

The Inverse Error Why Inverse–Based Decompositions

$$\begin{pmatrix} L_{\mathcal{FF}} & 0 \\ L_{\mathcal{CF}} & I \end{pmatrix}^{-1} A \begin{pmatrix} U_{\mathcal{FF}} & U_{\mathcal{FC}} \\ 0 & I \end{pmatrix}^{-1} = \begin{pmatrix} D_{\mathcal{FF}} & 0 \\ 0 & S_{\mathcal{CC}} \end{pmatrix} + \underbrace{\begin{pmatrix} * & F_{\mathcal{FC}} \\ F_{\mathcal{CF}} & * \end{pmatrix}}_{F}$$

Lemma [B.,Saad'04]

Denote by $E_{L,\mathcal{FF}}$, $E_{U,\mathcal{FF}}$ the entries being dropped from $L_{\mathcal{FF}}$, $U_{\mathcal{FF}}$. • coarse grid system \tilde{S}_{CC} from ILU

$$\Rightarrow \boldsymbol{F}_{\mathcal{F}\mathcal{C}} = -L_{\mathcal{F}\mathcal{F}}^{-1} \left(\boldsymbol{E}_{L,\mathcal{F}\mathcal{F}} \boldsymbol{D}_{\mathcal{F}\mathcal{F}} + \boldsymbol{D}_{\mathcal{F}\mathcal{F}} \boldsymbol{E}_{U,\mathcal{F}\mathcal{F}} \right) \boldsymbol{U}_{\mathcal{F}\mathcal{F}}^{-1} \boldsymbol{U}_{\mathcal{F}\mathcal{C}}$$

• Coarse grid system $\tilde{S}_{CC} = R^{T}AP$ (successively obtained via Galerkin)

$$\Rightarrow \mathbf{F}_{\mathcal{FC}} = - D_{\mathcal{FF}} E_{U,\mathcal{FF}} U_{\mathcal{FF}}^{-1} U_{\mathcal{FC}}$$

Advances in Preconditioning Techniques

Application Problems

Conclusions

Error Propagation Why Inverse–Based Decompositoins

Suppose that the diagonal entries occuring during the decomposition $L_{\mathcal{FF}}D_{\mathcal{FF}}U_{\mathcal{FF}} = A_{\mathcal{FF}} + E_{\mathcal{FF}}$ are uniformly bounded.

Error Propagation Why Inverse–Based Decompositoins

Suppose that the diagonal entries occuring during the decomposition $L_{\mathcal{FF}}D_{\mathcal{FF}}U_{\mathcal{FF}} = A_{\mathcal{FF}} + E_{\mathcal{FF}}$ are uniformly bounded.

Theorem [B.,Saad '04]

Coarse grid system Š_{CC} from ILU

If I_{im} , u_{mj} are dropped, whenever $|I_{im}|$, $|u_{mj}| \leq \varepsilon/\kappa^2$,

 \Rightarrow There exists a constant *K* such that $|\tilde{s}_{ij} - s_{ij}| \leq K(\kappa \epsilon)^2$

• Coarse grid system $\tilde{S}_{CC} = R^{T}AP$ (successively from Galerkin)

If I_{im} , u_{mj} are dropped, whenever $|I_{im}|$, $|u_{mj}| \leq \varepsilon$,

 \Rightarrow There exists a constant *K* such that $|\tilde{s}_{ij} - s_{ij}| \leq K(\kappa \epsilon)^2$

Challenging application problems

Consequences for inverse-based multilevel methods

- Estimate $\|L^{-1}\|$, $\|U^{-1}\|$ efficiently [Cline,Moler,Stewart,Wilkinson'77]
- Construct a well–suited initial system by a priori permutation and scaling $(\to A_{{\cal F}{\cal F}})$
- Keep $\|L^{-1}\|$, $\|U^{-1}\|$ below κ by inverse-based pivoting

• Tight κ desired, since $\|L^{-1}\|_{\infty} \leq \kappa \Rightarrow \sum_{j < i} |(L^{-1})_{ij}| \leq \kappa - 1$

Outline

Challenging application problems

- Circuit and device simulation
- Anderson Model a case study

2 Advances in Preconditioning Techniques

- Matchings
- Symmetric Matchings
- Symbolic reorderings techniques
- Inverse-based Techniques
- Aggressive Dropping
- 3 Application Problems
 - Circuit and Device Simulation
 - Anderson Model a case study
 - ILUPACK

Aggressive Dropping

Problem

- for practical problems we do not precisely know the optimal ε
- to be save we prefer a smaller tolerance

Consequences

- as $\varepsilon \to 0$, the fill–in significantly increases
- as $\varepsilon \rightarrow 0$, number of iteration steps decreases to a few number of steps
- memory requirement dramatically increases
- even for the iterative part, efficiency does not increase since the fill increases

< 由 > < 同 > < 臣 > < 臣 > 三 臣

Aggressive Dropping

Solution

- We do not necessarily need a small number of iteration steps
- instead: $L^{-1}AU^{-1} = D F$ should lead to small ||F|| and small perturbations in L^{-1} , U^{-1} could be tolerated

Lemma

Denote by μ_k , ν_k the number of nonzeros in column k of L (resp. row k of U). Let \tilde{L} , \tilde{U} be constructed from L, U by dropping entries I_{ik} , u_{kj} satisfying

$$\|L^{-1}\mathbf{e}_i\|\cdot|I_{ik}|\leqslant rac{ au}{\mu_k}, \quad |u_{kj}|\cdot\|\mathbf{e}_j^{ op}U^{-1}\|\leqslant rac{ au}{
u_k},$$

then

$$D-F = (I+E_L)(\tilde{D}-\tilde{F})(I+E_U)$$

where

$$\|E_L\|_1 \leqslant \tau, \|E_U\|_{\infty} \leqslant \tau.$$

Aggressive Dropping

Example. BCSSTK25.

- Compare time and memory WITHOUT and WITH aggressive dropping
- drop tolerance ε is decreased
- threshold τ for aggressive dropping is kept at 10⁻¹

Aggressive Dropping

Example. BCSSTK25.

- Compare time and memory WITHOUT and WITH aggressive dropping
- drop tolerance ε is decreased
- threshold τ for aggressive dropping is kept at 10⁻¹

Challenging	application	problems

Application Problems

Conclusions

Outline

Challenging application problems

- Circuit and device simulation
- Anderson Model a case study

Advances in Preconditioning Techniques

- Matchings
- Symmetric Matchings
- Symbolic reorderings techniques
- Inverse-based Techniques
- Aggressive Dropping

Application Problems

- Circuit and Device Simulation
- Anderson Model a case study
- ILUPACK

Application Problems

Conclusions

Circuit Simulation (benchmark collection from Infineon)

- compare regular and inverse-based ILU
- Dependence of the decomposition on drop tolerance ε (Convergence of GMRES(30) after at most 500 steps)

Challenging	application	problems	

Device Simulation

- direct solver (PARDISO, [Schenk,Gärner'04] excellent, but causes a lot of fill
- inverse–based ILU (ILUPACK [B.,Saad'04]): fix drop tolerance at $\varepsilon = 10^{-3}$ and use $\kappa = 10$.
- "regular" ILU fails until 1e 7 for most problems
- both use minimum weight matching and MeTiS.

	direct	solver	inverse-l	based ILU
	$\frac{nnz(L+U)}{nnz(A)}$	time[sec]	$\frac{nnz(L+U)}{nnz(A)}$	time[sec]
barrier2-1	32.3	4.7e3	0.9	7.9e1
barrier2-2	32.3	4.6e3	0.9	6.1e1
barrier2-3	32.3	4.6e3	0.9	_
barrier2-4	32.3	4.6e3	0.9	1.1e2
barrier2-9	32.8	4.6e3	0.9	3.2e1
barrier2-10	32.8	4.6e3	0.9	7.5e1
barrier2-11	32.8	4.7e3	0.9	7.4e1
barrier2-12	32.8	4.7e3	0.9	6.5e1

Challenging	application	problems

Outline

Challenging application problems

- Circuit and device simulation
- Anderson Model a case study

Advances in Preconditioning Techniques

- Matchings
- Symmetric Matchings
- Symbolic reorderings techniques
- Inverse-based Techniques
- Aggressive Dropping

Application Problems

- Circuit and Device Simulation
- Anderson Model a case study
- ILUPACK

Challenges,

- Symmetry requires structure preserving solver
- Block–oriented variant (1 \times 1, 2 \times 2), since highly indefinite
- Matching-based preprocessing [Duff,Koster'98], [Gilbert,Duff'02], [Duff,Pralet'04], [Schenk,Hagemann'04]
- classical approach: Cullum-Willoughby algorithm ['85]
- iterative methods ARPACK [Lehoucq, Sorensen, Yang'98], Jacobi–Davidson [Sleijpen, Van der Vorst'96], [Geus'02]
- direct solver PARDISO [Schenk,Gärtner], preconditioner ILUPACK [B.,Saad'04],[B.,Schenk'05]

Advances in Preconditioning Techniques

Application Problems

Conclusions

Numerical results [Schenk, B., Römer'05]

system size $n = m^3$	Time			
	10 ⁶	$2\cdot 10^6$	$4\cdot 10^{6}$	$7\cdot 10^{6}$
Cullum–Willoughby	71 : 04	_	_	_

Advances in Preconditioning Techniques

Application Problems

Conclusions

Numerical results [Schenk, B., Römer'05]

	Time				
system size $n = m^3$	10 ⁶	$2\cdot 10^6$	$4\cdot 10^{6}$	$7\cdot 10^{6}$	
Cullum–Willoughby	71 : 04	_	_	_	
ARPACK + PARDISO	5 : 37	_	_	_	

Advances in Preconditioning Techniques

Application Problems

Time

Conclusions

Numerical results [Schenk, B., Römer'05]

	Time				
system size $n = m^3$	10 ⁶	$2\cdot 10^6$	$4\cdot 10^{6}$	7 · 10 ⁶	
Cullum–Willoughby	71 : 04	_	—	_	
ARPACK + PARDISO	5 : 37	—	—	—	
ARPACK + ILUPACK	0 : 45	5:46	13 : 58	_	

Ja

Advances in Preconditioning Techniques

Application Problems

Conclusions

Numerical results [Schenk, B., Römer'05]

	Time			
system size $n = m^3$	10 ⁶	$2\cdot 10^6$	$4\cdot 10^{6}$	$7\cdot 10^{6}$
Cullum–Willoughby	71 : 04	_	_	—
ARPACK + PARDISO	5 : 37	_	—	_
ARPACK + ILUPACK	0 : 45	5 : 46	13 : 58	_
acobi-Davidson + ILUPACK	0 : 18	1:01	5:03	9 : 06

Advances in Preconditioning Techniques

Application Problems

Conclusions

Numerical results [Schenk, B., Römer, '05]

 $n = m^3$, m = 100, 130, 160, 190. $\omega = \omega_c = 16.5$.

	Memory [GB]			
system size $n = m^3$	10 ⁶	2 · 10 ⁶	$4\cdot 10^6$	7 · 10 ⁶
ARPACK + PARDISO	14.3	_	_	_
ARPACK + ILUPACK	1.4	3.0	5.8	_
Jacobi–Davidson + ILUPACK	1.4	3.0	5.8	9.6

Inverse-based decompositions: the key to success

- clear: modern iterative eigenvalue solver (Jacobi-Davidson) essential
- Matching quite helpful
- key role: bound κ for $\|L^{-1}\|$

Numerical example m = 70, 100. Vary bound κ inside ILUPACK

	$\kappa(m=70)$			κ (<i>m</i> = 100)		
	5	10	20	5	10	20
fill–in $\frac{nnz(L)}{nnz(A)}$	11.7	18.6	31.7	11.6	18.6	_
Time [sec]	1.7 <i>e</i> 2	3.7 <i>e</i> 2	7.8e2	5.2e2	1.1 <i>e</i> 3	

Challenging	application	problems

Outline

Challenging application problems

- Circuit and device simulation
- Anderson Model a case study

Advances in Preconditioning Techniques

- Matchings
- Symmetric Matchings
- Symbolic reorderings techniques
- Inverse-based Techniques
- Aggressive Dropping

Application Problems

- Circuit and Device Simulation
- Anderson Model a case study
- ILUPACK

ILUPACK V2.0

- multilevel ILU preconditioning software package
- inverse-based decompositions
- single/double, real and complex arithmetic supported
- classes of matrices that are supported
 - general
 - symmetric (Hermitian) positive definite
- new in V2.0
 - real/complex symmetric, complex Hermitian indefinite
 - interfaces to incorporate matchings is provided (PARDISO, MC64)
- http://www.math.tu-berlin.de/ilupack/

to be released soon ...

Conclusions

- development in recent years has significantly changed preconditioning methods as well as direct solvers
- matchings dramatically stabilize preconditioning methods
- symmetric matchings nowadays allow to efficiently treat symmetrically structured indefinite systems
- inverse-based decompositions are complementary approach
- analysis partially gives an explanation for this effect

